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X-Ray Topographic Image of
4H-SiC Wafer Section

Non-Micropipe Defects in SiC Wafers

• Not as detrimental to electrical
device characteristics as
micropipes.

• Densities of 3000 - 15000 / cm2 in
commercial SiC wafers
(~ 100 X micropipe densities).

0.4 mm

1c screw dislocations Micropipe

• Propagate into epilayers.

Elementary Screw Dislocations

• Non-hollow (closed) core.

 • Screw Dislocations of 
Burgers vector = 1c.

• Observable by Synchrotron
White Beam X-Ray 
Topography (SWBXT).
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Diode without 1c screw dislocation Diode with 1c screw dislocation
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Diode without 1c screw dislocation Diode with 1c screw dislocation

X-Ray
Topographic

Images of
Rectangular
Diodes on

Same Wafer.
0.1 mm0.1 mm

Low-light Optical
Micrographs of

Breakdown-Bias
Luminescence

No Microplasmas 1 Microplasma,
Located at 1c screw dislocation

Probe Tip

Probe Tip

Breakdown Microplasma Corresponds to 1c Screw Dislocation
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Without exception, every diode that SWBXT
identified as containing an elementary
screw dislocation exhibited degraded
reverse I-V and microplasmic breakdown.
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Breakdown Properties & Power Device Reliability*

  

Current Filaments

Breakdown current
(energy) evenly
distributes over
the entire device area.

*Paraphrased from Bell Labs EMP Handbook, Expired MIL STD’s 19500 & 461, and other literature sources.

Diode Area Diode Area
Breakdown current
(energy) localized to
very small area(s).

- Positive Temperature Coefficient
       of Breakdown Voltage Behavior

- Devices withstand very high energy
       before damage or failure occurs.

- High immunity to system overvoltage
      glitches, EMP, lightning, etc.

- Large Safe Operating Area.

- Very high reliability power devices.

- Negative Temperature Coefficient
       of Breakdown Voltage Behavior

- Devices withstand much less energy
       before damage or failure occurs.

- Reduced Safe Operating Area.

- Lower immunity to system overvoltage
      glitches, EMP, lightning, etc.

- Compromised power device reliability.



National Aeronautics and
Space Administration
Lewis Research Center

INSTRUMENTATION & CONTROL
TECHNOLOGY DIVISION

PGN4/98

10-10

10-8

10-6

10-4

10-2

-90 -70 -50

C
ur

re
nt

 (
A

)

Voltage (V)

298 K 473 K

673 KDiode C
(w/o SD's)

Diode D
(with SD's)

Microplasmic Breakdown
Current (Space-Charge Limited)

Bulk Breakdown
Current

I    V2α

Microplasma vs. Bulk Breakdown Current



National Aeronautics and
Space Administration
Lewis Research Center

INSTRUMENTATION & CONTROL
TECHNOLOGY DIVISION

PGN4/98

Breakdown Microplasma I-V

10-5

10-4

10-3

-25 -20 -15 -10 -5 0

C
ur

re
nt

 p
er

 S
cr

ew
 D

is
lo

ca
tio

n 
(A

)

Normalized Voltage (V)

I = 0.8 * (V
N
 - 3)2 µA

V
N
 = V

A
 - V

µplasma(on)

Microplasmic breakdown follows Space-Charge Limited (SCL) behavior
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Quantitative Measurement of Rectifier Breakdown Reliability*

Increase pulse amplitude and/or duration until device failure reached.

Device heats up as high breakdown power dissipated at junction.

Failure is thermal - critical failure temperature reached inside device.
- Second breakdown
- Physical damage to semiconductor or device contacts 

Semiconductor junction energy to fail
A fundamental parameter impacting high power device

Safe Operating Area (SOA), rectifier reliability.

Reverse-bias pulse breakdown testing of diode rectifiers.

*Bell Labs EMP Handbook, Expired MIL STD’s 19500 & 461,
Wunsch & Bell, IEEE Trans. Nucl. Sci. 15 p. 244 (1968), & other literature sources.

Measurement:
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Wunsch-Bell Pulse-Breakdown Thermal Failure Model*

To first order, thermal junction failure follows relation:

PD = Breakdown power density (kW/cm2) dissipated by junction during bias pulse.

κ, ρ, Cp = Semiconductor thermal conductivity, density, & specific heat.

Ti = Initial device temperature prior to breakdown bias pulse.

Tm = Critical failure temperature where physical device damage occurs.

t = Breakdown bias pulse duration (µs), 0.1 µs < t < 20 µs non-adiabatic heating.

• Experimentally valid approximation for wide range of silicon pn rectifiers.

• Localized breakdown greatly reduces failure power density.

Wunsch & Bell, IEEE Trans. Nucl. Sci. 15 p. 244 (1968).
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Wunsch-Bell Pulse-Breakdown Thermal Failure Model*
*Wunsch & Bell, IEEE Trans. Nucl. Sci. 15 p. 244 (1968)
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4H-SiC PN Diode Reverse Breakdown Pulse Testing

Devices containing elementary screw dislocations exhibit positive temperature
coefficient of breakdown voltage behavior.

(Area = 3.14 x 10-4 cm2, VBKDN(DC) = 80 V)
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4H-SiC pn diodes following pulse-breakdown failure

200 µm

Probe
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Location

Junction
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4H-SiC PN Diode Experimental Results
(NASA Sample 1905-4)

Elementary screw dislocations did not significantly impact the
breakdown failure power density of these 4H-SiC diodes.
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Discussion

Elementary screw dislocations did not significantly impact the breakdown
failure power density of these low-voltage 4H-SiC pn diodes.

HOWEVER, above result does not necessarily apply to:

• Higher voltage 4H-SiC pn diodes (1 kV - 10 kV).

• 4H-SiC Schottky diode rectifiers.

• Bipolar gain 4H-SiC device structures (Thyristors, IGBT’s, etc).

These structures could prove more vulnerable to localized breakdown
at elementary screw dislocations.

- Silicon bipolars and Schottky’s fail at lower power densities that Si pn diodes.

Further pulse-breakdown testing of various SiC device structures is needed.

- Silicon microplasma current relatively insensitive to junction width.
Higher SiC microplasma power density in higher-voltage SiC junctions?
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Summary

First successful measurement of 4H-SiC junction energy to fail characteristics.

Experimental 4H-SiC breakdown power density ~ 5X larger than silicon.

Elementary screw dislocations did not degrade breakdown reliability of
low-voltage (< 250 V) 4H-SiC pn junction diodes.

- Space-charge effects limit current of localized breakdown at
elementary screw dislocation.

Impact of elementary screw dislocations on other SiC device topologies
remains to be investigated.

- Positive temperature coefficient breakdown behavior observed
in diodes containing elementary screw dislocations.

- Classic  P α t -1/2  behavior observed for non-adiabitic pulsewidths.


